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THE PHASE SENSITIVITY OF AN INFINITE LENGTH 
OPTICAL FIBER SUBJECTED TO A FORCING FUNCTION 

AT A DEFINITE FREQUENCY AND WAVENUMBER 

1.    INTRODUCTION 

The phase sensitivity of an optical fiber is proportional to the longitudinal and radial 

strain in the fiber (Lagakos and Bucaro, 1981). These strains are related to the displacement 

field of the fiber by partial derivatives of the displacements (Timoshenko and Goodier, 1934), 

and can be changed by varying the external load on the fiber. Thus, the propagation of light 

through the fiber can be modified by the application of a mechanical force to the fiber exterior. 

In general, the optical fiber can be modeled as an elastic solid. The displacement field of elastic 

rods has been studied by numerous researchers because of their use in many mechanical 

designs (Holden, 1951; Kaul and McCoy, 1964; Meeker and Meitzler, 1964; Graff, 1975). 

There has not, however, been a thorough investigation of the phase sensitivity of optical fibers 

subjected to a forced response at a definite frequency and wavenumber. 

In this report, the effects of an infinite length, axisymmetric, isotropic rod subjected to 

an external load at a definite wavenumber and frequency are presented. The resulting 

mechanical stresses are used in fiber optic equations to determine the phase sensitivity and the 

change of refractive index of the fiber. The derivation begins with the partial differential 

equations of motion of an isotropic, elastic, slightly damped solid in cylindrical coordinates. 

The displacements are written as the sum of a dilatational component and an equivoluminal 

vector component. This approach allows the equations to be separated into a dilatational wave 

equation and three distortional (shear) wave equations. General solutions to these four wave 

equations are next determined. These general solutions are inserted at the diameter of the rod 

into the stress-strain relationships, which are equated to the externally applied loading function 

on the cylinder. Based on these relationships, a two-by-two system of linear equations is 

developed.  The solution to the linear equations yields the displacements of the rod.  The 
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strains are determined from these displacements and then inserted into equations that yield the 

optical phase sensitivity and the change of refractive index of the fiber. 

2.   SYSTEM MODEL AND CLOSED-FORM SOLUTION 

The system model is a cylindrical, linear, isotropic medium whose motion is governed 

by the equation (Timoshenko and Goodier, 1934) 

-p. 
//V2u + a + iu)VV«u = p—2-, 

at 
(1) 

where p is the density; X and fi are the Lame constants; t is time; • denotes a vector dot 

product; u is the cylindrical coordinate displacement vector expressed as 

ur(r,9,z,t) 

u = <ud(r,d,z,t)> , (2) 

uz(r,d,z,t) 

with subscript r denoting the radial direction, 6 denoting the angular direction, and z denoting 

the axial direction; V is the gradient vector differential operator written in cylindrical 

coordinates as (Potter, 1978) 

„     d .     Id.      d . 
V = Tr+-rMl9+Jzh' 

(3) 

with ir denoting the unit vector in the r direction, iQ denoting the unit vector in the 6 direction, 

and i denoting the unit vector in the z direction; V2 is the three-dimensional Laplace operator 

operating on vector u as 

M^-ftH^-z+T&y** ■   <4) 

with V   operating on scalar u as 

V»r,ö)Z-V.VUr,0;Z---r    ^      +r2 2     +        2 (5) 

and the term V • u is called the divergence and is equal to 
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V. u = ^r i 1 ^ i ^ i "r 

dr     r 96      dz      r 

The coordinate system of the rod is shown in figure 1. 

(6) 

Figure 1. Cylindrical Rod 

The displacement vector u is written as 

u = V0 + VxH, (7) 

where (j) is a dilatational scalar potential, x denotes a vector cross product, and H is an 

equivoluminal vector potential expressed as 

H = 

Hr(r,6,z,t) 

He(r,6,z,t) 

Hz(r,d,z,t) 

(8) 

Expanding equation (7) and breaking the displacement vector into its individual terms yields 

_dp    13HL_3HS_ (9) 
Ur~dr    r 36       dz   ' 
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ä     rdd      dz       dr 

z     dz      r        dr      r dd   ' 

Equation (7) is next inserted into equation (1), which results in 

^*-U (12) 
at 

and 

c 
2V2H = ^H 
5 dt2 

(13) 

The constants cd and cs are the complex dilatational and shear wave speeds, respectively, and 

are determined by 

cd = i±2K (14) 

and 

cs=  i^. (15) 

The relationship of the Lame constants to the compressional and shear moduli is shown as 

Ev 
(l + u)(l-2u) 

and 

A = 2>  (16) 

ß = G = —— , (17) 
^ 2(l + u) 

where E is the complex compressional modulus (N/m2), G is the complex shear modulus 

(N/m2), and v is the Poisson's ratio of the material (dimensionless). 

The conditions of infinite length, axisymmetric response (n = 0), and steady-state 

response are now imposed, allowing the scalar and vector potential to be written as 
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and 

<P = g(r)cos(ne)elkze10* = g{r)elkz el°* , 

Hr=hr(r)sin(n6)elkzeiwt=0 , 

He =hß(r)cos(nd)elkzel63t = hß(r)elkzei0* 

Jkz JcM _, 

(18) 

(19) 

(20) 

Hz = hz(r)sin(nd)elKZeiax = 0 , (21) 

where k is the wavenumber of excitation, co is the frequency of excitation, and i is the square 

root of -1. Note that for axisymmetric response, the equations of motion are dependent only 

on the scalar potential <p and angular contribution He of the vector potential. Additionally, 

because Hr = 0, Hz = 0, and HQ and </> are not functions of 0, equation (10) becomes 

UQ 
dd 

= 0, (22) 

where ( ) denotes any function.   Inserting equations (18)-(21) into equations (12) and (13) 

yields the following four wave equations: 

d2g(r) | 1 dg(r) | 

dr1 r   dr 4 
\ 
g(r) = 0 , 

d\{r) | 1 dhr(r) | 

dr' r    dr 
^-*2-± hr(r) = 0 , 

d\{r) | 1 dhQJr) | 

dr' r    dr V 
W = o , 

(23) 

(24) 

(25) 

and 

d\{r)    1 <fliz(r) 

- dr2        r    dr 

/   2 

vC2 

A 

y 
hz(r) = 0 (26) 

The solution to equations (23) and (25) is now found with a Bessel function. No 

solution is found to equations (24) and (26) because they do not contribute to the axisymmetric 

response. The solution to equation (23) is 
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g(r) = ClJ0(ar) , (27) 

where /0 
is a complex, zero-order, first-kind standard Bessel function; Cx is a complex 

constant (determined below); and 

a = K-k2 . (28) 

The solution to equation (23) is 

he(r) = C2Ji(ßr) , (29) 

where J^ is a complex, first-order, first-kind standard Bessel function; C2 is a complex 

constant (determined below); and 

/) = J^-*2 • 0°) 
CS 

The numerical evaluation of the complex-valued Bessel functions is described in the appendix. 

The displacements and external forces are now equated by use of the stress-strain 

constitutive equations on the forced surfaces of the rod. The normal stress, strain, and radial 

forces acting on the cylinder are related by 

arr(a,d,z,t) = (^ + 2ß)err(a,d,z,t) + ^£ee(a^zJ) + ^£zz(a,e,z,t) = p(a,d,z,t)  ,     (31) 

where <Jrr(a,8,z,t) is the normal radial stress, £rr(a,8,z,t) is the normal radial strain, 

eee(a,d,z,t) is the normal circumferential strain, £^(0,0,2,0 is the normal longitudinal strain, 

p(a,6,z,t) is the external pressure on the cylinder in the radial direction, and a denotes the 

outer radius. The shear stress, strain, and longitudinal forces are related using 

arz(a,d,z,t) = 2ß£rz(a,d,z,t) = f(a,d,z,t)   , (32) 

where crrz(a,d,z,t) is the shear stress, erz(a,6,z,t) is the shear strain, and f(a,d,z,t) is the 

external shear stress on the rod in the longitudinal direction. 

The strains are related to the displacements in an axisymmetric solid by (Timoshenko 

and Goodier, 1934) 
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dur 
£rr~ dr   ' 

_ "r £ee - — r 

£T, 

dz 

(33) 

(34) 

(35) 

and 

_ 1 (duz    dur 
s 

£rz~2{dr + ~dz' 
(36) 

The relationship between the displacements (and the derivatives of the displacements) and the 

potential functions g and he is found by combining equations (9), (11), (18), and (20) to 

produce 

Ilp=|'M)-I^(r)W'fl», r    '    dr 

( 
uz = V r dr   J 

dur_(d2g(r)    ikdhg(r) 

dr 

duz 

dz 

dr' dr 
eikzeiax 

V r dr   J 

( du7     (.,_dg(r) , Idhgjr)    hpjr)    dzhd(r) \ikzioX 
"~T"~~ —    IK ; 1 ; o     T        _o       |e     t        , 

V dr       r    dr r2 dr2 

(37) 

(38) 

(39) 

(40) 

(41) 

and 

i = (tt<iS&2 + *Vr)}*« ,ifl* (42) 

Combining equations (31), (33), (34), (35), (37), (39), and (40) yields the normal 

stress in terms of the potential functions g and hQ dXr-a as 

dr a   dr dr 
(43) 
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where P is the magnitude of the normal force acting on the exterior of the cylinder. Combining 

equations (32), (36), (41), and (42) yields the shear stress in terms of the potential functions g 

and hg at r = a . The result is 

' -L a     dr dr 
(44) 

dr      V a"J 

where F is the magnitude of the externally applied shear stress acting on the exterior of the rod. 

Implicit in equations (43) and (44) is the assumption that the external loads on the cylinder are 

occurring at a definite frequency and wavenumber. 

Inserting equations (27) and (29) into equations (43) and (44), applying the recurrence 

relationships of the first-kind standard Bessel function, and then rewriting as a two-by-two 

system of linear equations results in 

.a2\    fl22. \F\ 
(45) 

where the matrix coefficients anm are given as 

an = (-A-2A/)a2-^2]70(aa) + f^^yi(aa) , 

a2\ = (-2fiika)Ji(aa) , 

(46) 

(47) 

(48) 

and 

a22=[ß(k2-ß2)Wßa). (49) 

The radial displacement of the rod, now found using equations (27), (29), and (37) and 

the constants Cj and C2 from equation (45), is given as 

ur (r, z, t) = [-Qo/j (ccr) - C2ikJx (ßr)]eikzeia* , (50) 

which can also be written as 

ur(r,z,t) = Ur(r)eikze10* . (51) 
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The longitudinal displacement of the cylinder is found using equations (27), (29), and (38), 

and is written as 

uz(r,zj) = [ClikJ0(ar) + C2ßJo(ßr)]elkzeiox (52) 

or 

Jkzjox (53) uz(r,z,t) = Uz(r)euuel 

The strains are evaluated at r = 0 because light propagation is confined primarily to the middle 

of the fiber. The radial strain of the rod from equation (33) is 

£rr(0,z,t) -Q 
^ 

V27 
■C, eikzeiox (54) 

The longitudinal strain, found from equation (35), is 

e^ (0, z, t) = [-Cik2 + C2 (ikß)] eikzeiox . 

The strains are related to the optical phase sensitivity by the equation 

(p 2 

(55) 

(56) 

where HQ is the refractive index of the fiber, and Pn and P12 are the Pockels' coefficients. 

Inserting the values of n0 = 1.46, Pn = 0.126, and Pl2 = 0.270 changes equation (56) to 

^ = 0.712ezz-0.422err . 

The strains are related to the change of refractive index by the equation 

dn = -^-[2err(Pl-P4) + ezz(Pl-2P4)] , 

(57) 

(58) 

where P1=Pn= 0.126 and P4 = (Pn-P^) I 2 = -0.0718.  Inserting these values changes 

equation (58) to 

dn = -0.616 err- 0.420 ezz (59) 
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The above equations show that given the physical properties of the fiber and an external forcing 

function at a definite wavenumber and frequency, the optical phase sensitivity and the change 

of refractive index can be calculated in a closed-form solution. 

3.   FINITE ELEMENT SOLUTION 

The closed-form solutions (equations (57) and (59)) are compared to results obtained 

with finite element analysis for the specific case of an external normal force applied at zero 

wavenumber. Finite element analysis is a discretized modeling technique that breaks down the 

structure into a number of subdomains (elements) (Cook, 1974; Zienkiewicz, 1983). 

Constitutive equations are applied to each of these elements to develop equations of motion. 

The individual equations of motion are then assembled to form a global equation: 

M^g(0 + cM) + Kg(0 = fU,0 , (60) 
dt1 dt 

where M is the system mass matrix, C is the system damping matrix, K is the system stiffness 

matrix, g(t) is the generalized displacement vector, and f(x,t) is the external forcing function 

vector. The finite element results displayed here were obtained using ANSYS, which is a 

general purpose finite element computer program. Finite element analysis has the advantage of 

handling material and property discontinuities that are not easily resolved with other numerical 

techniques. It is routinely used for comparisons with other experiments and theories to verify 

results. It is important to note that, although the finite element analysis is an approximate 

numerical technique, it is extremely different from the analytical solution presented in section 2. 

The finite element grid of the fiber is shown in figure 2. Because the elements in this 

analysis are axisymmetric, the torsional motion of the rod is zero. The problem was discretized 

with 10 elements in the radial direction and was loaded with a normal forcing function 

(harmonic in time) on the exterior of the cylinder. The forcing function had no spatial variation 

and therefore was equivalent to zero wavenumber excitation. The outputs of the finite element 

10 
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program are longitudinal and radial stress; these values were inserted into equations (57) and 

(59) for comparison of the finite element method to the closed-form solution. 

^m^^^^m;M^^^ 

SSSs     SS 5^SS      iS 

Pe icot 

S    sü?    ÜsüJÄ    ^ 

a 

Figure 2. Finite Element Grid 

4.    ANALYSIS 

An analysis of an optical fiber with the above mathematical methods was performed. 

The following mechanical parameters were used: a = 62.5 x 10"6 m, E = 7.2 x 1010 (1 + 

0.010 N/m2, v = 0.17 (dimensionless), and p = 2200 kg/m3. The test case of/= 50 Hz, k = 

0, F = 0, and P = 1 N/m2 is used for model verification. These results are listed in table 1. 

The experimental results in the table are from a previous study (Davis et al., 1982). Note that 

all three methods show results within 0.16 dB of each other. 

Table 1. Comparison of Results at Zero Wavenumber 

Method |A</>/0PI(m2/N) |A0/0PI(dBrefm2/N) 

Closed-Form Model 4.54 x 10"12 -226.86 

Finite Element Model 4.58 x 10'12 -226.78 

Experiment 4.50 x 10"12 -226.94 

11 
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The wavenumber analysis of the model was conducted at two frequencies: 50 and 500 

Hz. This analysis was accomplished by first setting F = 0 and P = 1 N/m2 to determine the 

optical response of the fiber to a normal pressure excitation of unity and by next setting F = 1 

N/m2 and P = 0 to calculate the optical response of the fiber to a shear force excitation of unity. 

In figures 3-18, the short dashed line represents the dilatational wavenumber (kd=co/cd) and 

the long dashed line represents the shear wavenumber (ks=0)/cs). The exponential functions 

in time and space that are associated with the closed-form solution are suppressed. 

Figure 3 is a plot of the transfer function of longitudinal strain divided by normal 

pressure versus wavenumber for/= 50 Hz. Figure 4 is a plot of the transfer function of radial 

strain divided by normal pressure versus wavenumber for/= 50 Hz. Figure 5 is a plot of the 

transfer function of optical phase sensitivity divided by normal pressure versus wavenumber 

for/= 50 Hz. Figure 6 is a plot of the transfer function of change of refractive index divided 

by normal pressure versus wavenumber for / = 50 Hz. Figure 7 is a plot of the transfer 

function of longitudinal strain divided by shear stress versus wavenumber for / = 50 Hz. 

Figure 8 is a plot of the transfer function of radial strain divided by shear stress versus 

wavenumber for / = 50 Hz. Figure 9 is a plot of the transfer function of optical phase 

sensitivity divided by shear stress versus wavenumber for/= 50 Hz. Figure 10 is a plot of the 

transfer function of change of refractive index divided by shear stress versus wavenumber for/ 

= 50 Hz. 

Figure 11 is a plot of the transfer function of longitudinal strain divided by normal 

pressure versus wavenumber for/= 500 Hz. Figure 12 is a plot of the transfer function of 

radial strain divided by normal pressure versus wavenumber for/= 500 Hz. Figure 13 is a 

plot of the transfer function of optical phase sensitivity divided by normal pressure versus 

wavenumber for/= 500 Hz. Figure 14 is a plot of the transfer function of change of refractive 

index divided by normal pressure versus wavenumber for/= 500 Hz. Figure 15 is a plot of 

the transfer function of longitudinal strain divided by shear stress versus wavenumber for/= 

500 Hz. Figure 16 is a plot of the transfer function of radial strain divided by shear stress 

12 
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versus wavenumber for / = 500 Hz. Figure 17 is a plot of the transfer function of optical 

phase sensitivity divided by shear stress versus wavenumber for/= 500 Hz. Figure 18 is a 

plot of the transfer function of change of refractive index divided by shear stress versus 

wavenumber for/= 500 Hz. 

Comparing the fiber response to normal excitation (figures 3-6 and figures 11-14) and 

the fiber response to shear excitation (figures 7-10 and figures 15-18) shows that the fiber is 

120 dB more sensitive to shear excitation than to normal excitation at 50 Hz and is 100 dB 

more sensitive to shear excitation than to normal excitation at 500 Hz. The response to normal 

excitation has relatively little change from 50 to 500 Hz. This implies that the time or 

frequency dynamics associated with a normal load on the fiber (and a corresponding response 

at r = 0) are extremely small. This was confirmed by analyzing the finite element model with 

static excitation, which produced results identical to a dynamic excitation at frequency/= 50 

Hz. The fiber response to shear excitation is a decreased response of 20 dB from 50 to 500 

Hz. In all the figures, the maximum response is occurring very close to the dilatational 

wavenumber. Additionally, the response around the shear wavenumber is flat, indicating that 

there is no shear wave propagation in the structure. 

The above closed-form solution (equations (l)-(59)) can be simplified for low- 

wavenumber regions with linear approximations to the Bessel functions. Use of the small 

argument assumptions allows the Bessel functions to be written as 

J0(z)»l ,(61) 

and 

W-f. <62> 
Using equations (61) and (62), the matrix coefficients anm in equation (45) can be rewritten as 

an = -X 
f^ 

2 
2 

-\ia   , (63) 
\cd) 

an = -pdkß , (64) 

13 
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a2l = -ßika a , (65) 

and 

a??=^_i^ (66) 
11        2 2 

The strains are evaluated using equations (54) and (55), with the constants C1 and C2 

determined by equations (63)-(66). This expression of the closed-form solution is slightly 

different than that derived earlier because it contains the low-wavenumber assumption. The 

low-wavenumber solution was compared to the exact closed-form solution. The results are 

nearly identical up to a wavenumber of 1000 rad/m and vary only by 0.2 dB at a wavenumber 

of 4000 rad/m (for calculations at 50 Hz). For most applications, the low-wavenumber 

assumption is adequate to describe the response of the fiber. 

5.    CONCLUSIONS 

The optical phase sensitivity of an infinite length fiber is shear stress dominated. When 

the fiber is subjected to a normal pressure, the frequency domain dynamics are extremely 

small. When the fiber is subjected to a shear stress, there is a 20-dB drop in the optical phase 

sensitivity between 50 and 500 Hz. The low-wavenumber assumption is accurate to model the 

response of the fiber up to a wavenumber of at least 4000 rad/m. 

14 
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Figure 3. Transfer Function of Longitudinal Strain Divided by Normal 
Pressure Versus Wavenumber for/= 50 Hz 
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Figure 4. Transfer Function of Radial Strain Divided by Normal Pressure 
Versus Wavenumber for/= 50 Hz 
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Figure 5. Transfer Function of Optical Phase Sensitivity Divided by Normal 
Pressure Versus Wavenumber for/= 50 Hz 
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Figure 6. Transfer Function of Change of Refractive Index Divided by Normal 
Pressure Versus Wavenumber for/= 50 Hz 
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Figure 7. Transfer Function of Longitudinal Strain Divided by Shear Stress 
Versus Wavenumber for/= 50 Hz 
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Figure 8. Transfer Function of Radial Strain Divided by Shear Stress Versus 
Wavenumber for/= 50 Hz 
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Figure 9. Transfer Function of Optical Phase Sensitivity Divided by Shear 
Stress Versus Wavenumber for/= 50 Hz 
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Figure 10. Transfer Function of Change of Refractive Index Divided by Shear 
Stress Versus Wavenumber for/= 50 Hz 
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Figure 11. Transfer Function of Longitudinal Strain Divided by Normal 
Pressure Versus Wavenumber for/= 500 Hz 
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Figure 12. Transfer Function of Radial Strain Divided by Normal Pressure 
Versus Wavenumber for/= 500 Hz 
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Figure 13. Transfer Function of Optical Phase Sensitivity Divided by Normal 
Pressure Versus Wavenumber for/= 500 Hz 
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Figure 14. Transfer Function of Change of Refractive Index Divided by 
Normal Pressure Versus Wavenumber for/= 500 Hz 
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Figure 15. Transfer Function of Longitudinal Strain Divided by Shear Stress 
Versus Wavenumber for/= 500 Hz 
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Figure 16. Transfer Function of Radial Strain Divided by Shear Stress Versus 
Wavenumber for/= 500 Hz 
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Figure 17. Transfer Function of Optical Phase Sensitivity Divided by Shear 
Stress Versus Wavenumber for/= 500 Hz 
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Figure 18. Transfer Function of Change of Refractive Index Divided by Shear 
Stress Versus Wavenumber for/= 500 Hz 
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APPENDIX - NUMERICAL EVALUATION OF THE BESSEL FUNCTION / 

The complex Bessel function J was evaluated numerically. Based on the magnitude of 

the argument, this process used one of two equations. If the magnitude of the argument of z 

was less than 3.0, the equation 

sn   16   /     2 / A\k 

■W = 
(-zz/4)A 

(A-l) 
,2)   ^k\{k + n)\ 

was used.  When the magnitude of the argument of z was greater than 3.0, an asymptotic 

expansion was used (where jargzj <it): 

W = 

where 

An(z) = l 

An(z)cos\z- — --\-Bn{z)sm\z- — -- 

(4n2-l)(4n2-9)    (4n2 - \){An2 - 9)(4K
2
 - 25)(4n2 - 49) 

(A-2) 

+ 

2!(8zr 4!(8zr 

{An2 - l)(4n2 - 9)(4n2 - 25)(4n2 - 49)(4n2 -81)(4AI
2
 -121) 

6!(8z)6 

(4n2 - l)(4n2 - 9)(4»2 - 25)(4n2 - 49)(4n2 - 8 l)(4n2 -121)(4«2 -169)(4«2 - 225) 

8!(8z)8 

(A-3) 

and 

Bn(z) = 
{An2 -1)    (4n2 - 1)(4«2 -9)(4«2-25) 

8z 3!(8z)~ 

(4n2 - l)(4n2 - 9){An2 - 25)(4»2 - 49)(4n2 - 81) 

5!(8z)5 

(4n2 -l)(4n2 -9)(4n2 -25)(4n2 - 49)(4n2 -81)(4rc2 - 121)(4n2 -169) 

7!(8z)7 

(A-4) 
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